#### Earthquake Triggering

#### Nicholas van der Elst

NSF Postdoctoral Fellow Lamont-Doherty Earth Observatory

**PASI Magma-Tectonic Interactions** 

10 May 2013

#### Earthquake machine



#### Earthquake machine



#### Triggering terminology



Triggered earthquake is statistically associated in time and space with some trigger event

## Frictional stability: the rock mechanics perspective

#### Back to basics: Why do faults fail?

#### MAXIMUM FRICTION

#### EXPLANATION

Shear Stress

|               | SYMBOL                                                        | REFERENCE                   | ROCK TYPE                             |  |  |  |  |  |  |  |
|---------------|---------------------------------------------------------------|-----------------------------|---------------------------------------|--|--|--|--|--|--|--|
|               |                                                               | 2F                          | Granite , fractured                   |  |  |  |  |  |  |  |
|               | •                                                             | 2G                          | Granite , ground surface              |  |  |  |  |  |  |  |
|               | v                                                             | 3                           | Limestone , Gabbro , Dunite           |  |  |  |  |  |  |  |
|               | ۵                                                             | 5                           | Granite, ground surface               |  |  |  |  |  |  |  |
|               | o                                                             | 6F                          | Weber Sandstone , faulted             |  |  |  |  |  |  |  |
| F             | •                                                             | 65 Weber Sandstone, saw cut |                                       |  |  |  |  |  |  |  |
|               | •                                                             | 9                           | Granodiorite 0.00                     |  |  |  |  |  |  |  |
|               | ¢                                                             | 13                          | Gneiss and Mylonite 0.51              |  |  |  |  |  |  |  |
|               | 0                                                             | 16                          | Plaster in joint of Quartz Monzonite  |  |  |  |  |  |  |  |
| -             | •                                                             | 20                          | Quartz Monzonite joints               |  |  |  |  |  |  |  |
|               | <ul> <li>Westerly Granite, Chlorite, Serpentinite,</li> </ul> |                             |                                       |  |  |  |  |  |  |  |
|               | Illite , Kaolinite , Halloysite ,                             |                             |                                       |  |  |  |  |  |  |  |
|               |                                                               |                             | Montmorillonite , Vermiculite         |  |  |  |  |  |  |  |
| Γ             | •                                                             | 26                          | Granite                               |  |  |  |  |  |  |  |
| L             | ° .                                                           | 27                          | Kaolinite , Halloysite , Illite , 🔹 🖌 |  |  |  |  |  |  |  |
| Γ             |                                                               |                             | Montmorillonite , Vermiculite         |  |  |  |  |  |  |  |
| L             | L ŵ                                                           |                             |                                       |  |  |  |  |  |  |  |
|               |                                                               |                             |                                       |  |  |  |  |  |  |  |
| F             |                                                               |                             |                                       |  |  |  |  |  |  |  |
|               |                                                               |                             | K K                                   |  |  |  |  |  |  |  |
| ⊢             | -                                                             |                             | ά τ <sup>α</sup> τ <sup>α</sup>       |  |  |  |  |  |  |  |
|               |                                                               |                             | W, + **** *s                          |  |  |  |  |  |  |  |
| F             |                                                               |                             | X ANT A                               |  |  |  |  |  |  |  |
|               |                                                               |                             |                                       |  |  |  |  |  |  |  |
| -             |                                                               |                             |                                       |  |  |  |  |  |  |  |
|               | . 6*                                                          | S.                          | · *M                                  |  |  |  |  |  |  |  |
| ┠             | - సి్                                                         | 8                           | "<br>Duarlas 1070                     |  |  |  |  |  |  |  |
|               | 1° 36                                                         | -d                          | Byeriee 1978                          |  |  |  |  |  |  |  |
| ╟             | * A 100                                                       | SM.                         | -v                                    |  |  |  |  |  |  |  |
| L             |                                                               | ÷γ                          |                                       |  |  |  |  |  |  |  |
|               |                                                               |                             |                                       |  |  |  |  |  |  |  |
| Normal Stress |                                                               |                             |                                       |  |  |  |  |  |  |  |

#### Coulomb Friction

$$\tau_f = c + \mu \sigma_n$$

#### **Coulomb** Failure



#### **Coulomb Failure**



#### **Coulomb** Failure

![](_page_8_Figure_1.jpeg)

#### Static and dynamic friction

![](_page_9_Figure_1.jpeg)

### Where Does Friction Come From?

![](_page_10_Figure_1.jpeg)

Fig. 2.1. Schematic diagram, in section and plan view, of contacting surface. The stippled regions in plan view represent the areas of asperity contact, which together comprise the real contact area A<sub>r</sub>.

#### 1. Static Friction is Not Static

![](_page_11_Figure_1.jpeg)

#### Marone 1998

## 2. Dynamic Friction Depends on Sliding Velocity

![](_page_12_Figure_1.jpeg)

Sliding stability depends on the friction rate parameter: (a - b)

Marone 1998

## So What if My Frictional Rate Parameter is Negative?

![](_page_13_Figure_1.jpeg)

#### Critical stiffness transition in the lab

![](_page_14_Picture_1.jpeg)

#### Critical stiffness in the lab

![](_page_15_Figure_1.jpeg)

$$k_c = \frac{(b-a)\sigma}{D_c}$$

Courtesy H. Savage

#### Triggering and conditional stability

![](_page_16_Figure_1.jpeg)

Very easy to trigger a stably sliding fault near the stability threshold

Courtesy H. Savage

Scholz, 1998

#### The stability transition in faults

![](_page_17_Figure_1.jpeg)

The frictional rate parameter varies with temperature

Scholz 1998

#### The stability transition in faults

![](_page_18_Figure_1.jpeg)

Scholz 1998

#### Conditionally stable failure $k \leq \frac{(b-a)(\sigma_n - P)}{D_c}$ $\tau_c = c + \mu \sigma$ slow slip immediate slip Shear stress T С 2θ $\sigma_3$ $\sigma_1$ $\mathbf{0}$ $\boldsymbol{\sigma}$ Effective normal stress $\sigma = \sigma_n - P$

#### Are conditionally stable faults more triggerable?

![](_page_20_Figure_1.jpeg)

Dynamic triggering susceptibility

![](_page_20_Figure_3.jpeg)

#### Are conditionally stable faults more triggerable?

![](_page_21_Figure_1.jpeg)

#### Gomberg et al 2008

## Implications for volcanic regions

- Volcanic and hydrothermal regions may pass repeatedly through the stability transition
  - 1. varying temperatures (b a)
  - 2. high and heterogeneous pore pressure ( $\sigma$  P)
  - 3. variable elastic stiffness (k)
- Volcanoes may be critical for the same reason as deep subduction zones.
- Frictional slip at low effective stress may be aseismic or tremor-like.

$$k_c = \frac{(b-a)(\sigma - P)}{D_c}$$

Evidence for the role of fluids in dynamic earthquake triggering

![](_page_24_Figure_0.jpeg)

February 27, 2010, NEAR COAST OF CENTRAL CHILE, M=8.8

#### **Dynamic triggering**

![](_page_25_Figure_1.jpeg)

Hill and Prejean, 2007

## What can triggering sensitivity tell us about the importance of fluids?

#### Table 2 Reported instances of remote dynamic triggering

|                      | Responses |               |          | Triggering mainshocks |                       |                                             |
|----------------------|-----------|---------------|----------|-----------------------|-----------------------|---------------------------------------------|
| Site                 | Number    | Mmax          | Regime   | M min-max             | Distance (km) min-max | References                                  |
| Mt. Wrangell, AK     | 1         | <i>M</i> < 1  | V        | 9.1                   | ~11 000               | West <i>et al.</i> , 2005                   |
| Katmai, AK           | 4         | M = 2.3       | G, V     | 7.9                   | 115–740               | Moran et al., 2004                          |
| South B.C., Canada   | 1         | N/A           | С        | 7.9                   | 1800-2200             | Gomberg et al., 2004                        |
| Mt. Rainer, WA       | 1         | M < 1         | V        | 7.9                   | 3108                  | Prejean et al., 2004                        |
| Geysers, CA          | ~11?      | M<3           | E, G, V  | 6.5-7.9               | 202-3120              | Gomberg, 1996, Prejean et al., 2004         |
| Coso, CA             | >4        | M = 3.2       | E, G, V  | to 7.9                | 165-660               | Prejean et al., 2004                        |
| Long Valley, CA      | 2         | M = 3.4       | E, G, V  | 7.4-7.9               | 414-3454              | Gomberg et al., 2001, Prejean et al., 2004  |
| Mammoth Mtn, CA      | 2         | M<2           | E, G, V  | 7.2-7.9               | 420-3454              | Prejean et al., 2004; Johnston et al., 2004 |
| Lassen Peak, CA      | 1         | M = 2.8       | E, V     | 7.4                   | 840                   | Hill et al., 1995                           |
| Burney, CA           | 1         | M = 2.8       | E        | 7.4                   | 900                   | Hill et al., 1995                           |
| Salton Sea area, CA  | 1         | M = 4.7       | E, V, G  | 7.1                   | 120-150               | Hough and Kanamori, 2002                    |
| Central and South CA | >5        | M = 5?        | E & C    | 5.8-6.1               | 70–120                | Hough, 2005                                 |
| Offshore S. CA       | 1         | M = 2.5       | E        | 7.9                   | 4003                  | Prejean et al., 2004                        |
| Western Nevada       | 1         | $M \sim 4$    | E, G     | 7.4                   | 450-650               | Anderson et al., 1994                       |
| Little Skull Mtn, NV | 1         | M = 5.6       | E        | 7.4                   | 240                   | Anderson et al., 1994                       |
| Yellowstone, WY      | 2         | M = 3.0       | E, G, V  | 7.4-7.9               | 1250-3100             | Husen et al., 2004b                         |
| Wasatch front, UT    | 2         | M = 3.2       | E, G     | 7.4-7.9               | 3000-3500             | Pankow et al., 2004                         |
| Cascade, ID          | 2         | M = 1.7       | E, G     | 7.4                   | 1100                  | Husker and Brodsky, 2004                    |
| Eastern US (1811-12) | 1         | $M \sim 5?$   | С        | M>7                   | ~1000                 | Hough, 2005                                 |
| Cerro Prieto, Mexico | 1         | M = 4.1       | E, V, G  | 7.1                   | 260                   | Glowacka et al., 2002                       |
| Valley of Mexico     | $\sim 7$  | $M \sim 4$    | E, G, V  | 7.6-8.0               | 303-588               | Singh et al., 1998                          |
| Aso, Japan           | 5         | $M \sim 2$    | E, V     | 7.1-7.7               | 900-2213              | Miyazawa et al., 2006                       |
| Iwo Jima, Japan      | 4         | M<2           | IA, G, V | 7.1-8.0               | 1228-2002             | Ukawa et al., 2002                          |
| SISZ, Iceland        | 1         | $M \sim 5$    | E, G     | 6.5                   | 80–100                | Arnadottir et al., 2004                     |
| Roer Valley, Holland | 1         | M = 3.7       | E        | 5.4                   | 40                    | Camelbeeck et al., 1994                     |
| Greece               | 1         | M<3.5         | E        | 7.4                   | 400-1000              | Brodsky et al., 2000                        |
| Syria-Lebanon border | 1         | M = 3.7       | С        | 7.3                   | 500                   | Mohamad et al., 2000                        |
| Tiawan region        | 9         | M>4           | ?        | 6.5-7.1               | 138-2959              | Wan et al., 1996                            |
| Nanki Trough, Japan  | 2         | N/A           | S        | 7.3-8.1               | 900-4000              | Miyazawa and Mori, 2005                     |
| Tonga trench         | 2         | M = 5.9 - 7.7 | S        | 7.1–7.6               | 260–290               | Tibi et al., 2002                           |

Tectonic regimes: E, extensional, transtensional; C, convergent, transpressional; G, geothermal; V, volcanic; IA, island arc; S, Subcrustal subduction zone; SISZ, South Iceland Seismic Zone.

#### Hill and Prejean

## Why might extensional regions be more triggerable?

![](_page_27_Figure_1.jpeg)

## Are sites with non-volcanic fluid flow triggerable?

![](_page_28_Figure_1.jpeg)

Triggering at Prague, Oklahoma

![](_page_29_Figure_1.jpeg)

![](_page_30_Figure_0.jpeg)

# Summary of triggering observations in induced regions

- Injection pressure at all sites is *hydrostatic*
- Only one shot at triggering (recharge needed)
- Long periods may be more effective triggers.
- Triggering *only* at long-term injection sites that hosted large earthquakes within 6-20 months.
- Triggering at *all* long-term injection sites that hosted large earthquakes within 6-20 months.

# Evidence for fluid involvement in dynamic triggering

- Fluids can promote conditional stable slip.
- down dip subduction zones are triggerable
- extensional environments are more triggerable than compressional
- regions of fluid induced seismicity are very triggerable
- volcanic and hydrothermal regions are triggerable

#### the Mechanism of dynamic triggering

![](_page_34_Figure_0.jpeg)

1999 M7.4 Oaxaca earthquake: (static stress change < 0.2 Pa)

Brodksy et al, 2003

![](_page_35_Figure_0.jpeg)

Triggering Mechanism: permeability enhancement

Aquifer permeability is enhanced by seismic waves

Elkhoury and Brodsky 2006

#### Fluid pumping and fracture unclogging

![](_page_36_Figure_1.jpeg)

Differences in poro-elastic compressibility (specific storage) drives flow into fault

Diffusion timescale means pressure change in the fault is larger for long period waves.

Brodksy and Prejean, 2005

### Fracture unclogging in the lab

![](_page_37_Figure_1.jpeg)

![](_page_37_Picture_2.jpeg)

Elkhoury, et al. 2011

## Triggering by changing pore pressure pressurization rate

![](_page_38_Figure_1.jpeg)

### Triggering by permeability enhancement explains...

- Enhanced Sensitivity to long periods
- Selective or inconsistent triggering
- Recharge needed between triggers
- Delayed triggering (diffusion of fluids along fault)
- Extreme susceptibility of hydrothermal/volcanic/induced fields

### Conclusion

• Water may play an important role in the seismic cycle.

![](_page_40_Figure_2.jpeg)