What triggers most earthquakes? The answer lies in the shadows

Andaman Sea

Sumatra

1970-2009 M≥4.5 earthquakes

Volkan Sevilgen

yanmar

Seismicity.net USGS Contractor

A presentation of Sevilgen, Stein, and Pollitz (Proc Natl Acad Sci USA, 2012)

1992 M=7.3 Landers shock increases stress at Big Bear

Landers

Big

Bear

First 3 hr of Landers aftershocks plotted

from Stein (2003)

Los

Angeles

1992 M=7.3 Landers shock promotes the M=6.5 Big Bear shock 3 hr later

Landers

Big

Bear

 \bigcirc

First 3 hr of Landers aftershocks plotted

from Stein (2003)

Los

Angeles

...and promotes the M=7.1 Hector Mine shock 7 yr later

Hector Mine

Los Angeles

> from *Stein* (2003)

Thursday, May 16, 2013

First 7 yr of aftershocks plotted

Arguments for dynamic stress triggering

- Remote triggering by Love waves (Hill et al, 1993; Brodsky et al, 2000; Brodsky & Prejean, 2005; Gomberg & Johnson, 2005; Velasco et al, 2008; Pollitz et al, 2012)
- Tremor is triggered by large distant quakes (Peng et al, 2008; Peng & Chao, 2008)
- Directivity distorts aftershock zones (*Kilb et al*, 2000 & 2002; *Doser et al*, 2009)
- No seismicity rate drop in stress shadows (Marsan, 2003; Felzer & Brodsky, 2004)

Arguments for static stress triggering

- Correlation of stress change & seismicity rate change (*Stein*, 1999; *Parsons*, 2002)
- Tidal triggering of quakes & tremor (Cochran et al, 2004; Tanaka et al, 2004)
- Swarms triggered by creep (*Vidale & Shearer*, 2006; *Lohman & McGuire*, 2007)
- Seismicity rate drop in stress shadows (Harris & Simpson, 1998; Toda & Stein, 2004; Ma et al, 2005; Marsan & Nalbant, 2005: Toda et al, 2005; Mallman & Parsons, 2008; Chan & Stein, 2009)

Arguments for dynamic stress triggering

- Remote triggering by Love waves (Hill et al, 1993; Brodsky et al, 2000; Brodsky & Prejean, 2005; Gomberg & Johnson, 2005; Velasco et al, 2008; Pollitz et al, 2012)
- Tremor is triggered by large distant quakes (Peng et al, 2008; Peng & Chao, 2008)
- Directivity distorts aftershock zones (*Kilb et al*, 2000 & 2002; *Doser et al*, 2009)
- No seismicity rate drop in stress shadows (Marsan, 2003; Felzer & Brodsky, 2004)

Arguments for static stress triggering

- Correlation of stress change & seismicity rate change (Stein, 1999; Parsons, 2002)
- Tidal triggering of quakes & tremor (Cochran et al, 2004; Tanaka et al, 2004)
- Swarms triggered by creep (*Vidale & Shearer*, 2006; *Lohman & McGuire*, 2007)
- Seismicity rate drop in stress shadows (Harris & Simpson, 1998; Toda & Stein, 2004; Ma et al, 2005; Marsan & Nalbant, 2005: Toda et al, 2005; Mallman & Parsons, 2008; Chan & Stein, 2009)

The term 'stress shadow' is first coined by Ruth Harris and Bob Simpson in their 1998 paper.

Here's how we calculate the static Coulomb stress change imparted by a strike-slip source

Shear stress change, τ_{S}

Here's how we calculate the static Coulomb stress change imparted by a strike-slip source

Here's how we calculate the static Coulomb stress change imparted by a strike-slip source

The Coulomb Stress change depends on the receiver fault strike dip, and rake

A stress shadow for one receiver fault orientation can be a stress trigger zone for another

Overcoming the stress shadow/seismicity rate drop imbalance

Overcoming the stress shadow/seismicity rate drop imbalance

Bay area shocks during the 75 years before 1906

from Stein (Nature, 2003)

Earthquakes from Bakun [1999] and Ellsworth [1990]

Bay area shocks during the 75 years *after* 1906

from Stein (Nature, 2003)

1911 M=6.2 shock from Bakun [BSSA, 1999]

Needed for the ideal test case

- Large mainshock transmits stress over great distance
- Simple rupture propagation for dynamic calculations
- Receiver faults physically separated from source fault
- Long pre- and post-mainshock record of seismicity

Needed for the ideal test case

- Large mainshock transmits stress over great distance
- Simple rupture propagation for dynamic calculations
- Receiver faults physically separated from source fault
- Long pre- and post-mainshock record of seismicity

Stress transfer from 2004 M=9.2 Sumatra mainshock to Andaman backarc rift-transform system fulfills these

2004 rupture area Northward rupture at 2.8 km/sec (Ishii et al, 2005)

Oblique subduction along the Sunda trench

Oblique subduction along the Sunda trench produces the Andaman backarc system

Transform sections

Transform sections

Rift sections

Pre-mainshock seismicity illuminates the megathrust and backarc system

Seismicity (Pesicek etal, 2010)

• Before 2004 rupture (30 Years)

Backarc seismicity changes after the 2004 mainshock

Seismicity (Pesicek etal, 2010)

- Before 2004 rupture (30 Years)
- After 2004 rupture (5 years)

Backarc seismicity changes after the 2004 mainshock

Seismicity (Pesicek etal, 2010)

- Before 2004 rupture (30 Years)
- After 2004 rupture (5 years)

Northern backarc shuts down after 2004

Thursday, May 16, 2013

After M=9.2 quake, Box *N* shuts down and Box *S* turns on—both for 5 years

'Triggered' seismicity along the backarc behaves like aftershocks

'Triggered' seismicity along the backarc behaves like aftershocks

Strike-slip focal mechanisms all but cease after mainshock

Strike-slip focal mechanisms all but cease after mainshock

Strike-slip focal mechanisms all but cease after mainshock

Rate of strike-slip mechanisms drops by 2/3, rift mechanisms increase 8-fold

Observed quakes: right-lateral events halted, rifts activated

Right-lat. transform-rift system

on faults

0

Static stress consistent with observations for fault friction < 0.5

Static stress consistent with observations for fault friction <0.5

Focal mechanism change explained by static stress

Focal mechanism change explained by static stress

The 53% gain in promoted mechanisms has a significance level of 0.03%

Dynamic Coulomb stress modeling strategy

- Direct Green's function method (Freiderich & Dalkolmo 1995, Pollitz et al 2012)
- Isotropic PREM earth model, with all spherical harmonic degrees from 0 to 3000
- Low-pass filtered with 10-s corner period (higher frequencies lost)
- 6 x 6 km cells, calculated at 10 km depth, for friction of 0.2
- Banerjee et al (2007) source with 2.8 km/s rupture propagation over 6000 patches
- Method validated against Aki (1980), Bouchon (1981), Nissen-Meyer et al (2007)

Two side-by-side animations with stress resolved on transforms and rifts

Thursday, May 16, 2013

No clear difference between peak dynamic stress on rifts and transforms

Peak dynamic stress is highest stress ever attained over 1000 s minus static stress

No clear difference between peak dynamic stress on rifts and transforms

Peak dynamic stress is highest stress ever attained over 1000 s minus static stress

No clear difference between peak dynamic stress on rifts and transforms

Peak dynamic stress is highest stress ever attained over 1000 s minus static stress

If anything, dynamic stress should have favored transform earthquakes

If anything, dynamic stress should have favored transform earthquakes

If anything, dynamic stress should have favored transform earthquakes

Frequency (Hz)

At least for 3 hr to 5 yr after the 2004 mainshock, quakes as far as 400 km away respond to the static stress changes

Sevilgen, Stein & Pollitz Proc Natl Acad Sci USA, 2012

